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ABSTRACT 

This study systematically evaluates the performance of Cox proportional hazards, exponential, 

and Log-normal survival models using a dataset of 230 breast cancer patients. Descriptive statistics 

reveal a predominance of female patients (96%) and various cancer stages, with the majority at Stage II 

(41%). The Kaplan-Meier curve illustrates a gradual decline in overall survival probability over 35 

months, dropping to approximately 50% by 20 months. Significant differences in survival probabilities 

are observed based on smoking status (p = 0.006) and occupation (p = 0.001), while no significant 

differences are detected across cancer stages (p = 0.5) or treatment types (p = 0.1). The Cox model 

indicates that smoking status and specific occupations significantly affect hazard ratios, while 

immunotherapy shows a significant reduction in hazard (HR = 0.609, p = 0.018). The proportional 

hazards assumption remains largely intact across the covariates in the Cox model. The comparison of 

survival models using AIC and BIC values shows that the Log-Normal model performs best, with the 

lowest AIC (1255.282) and BIC (1302.461), indicating a better fit while accounting for model 

complexity. The Cox Proportional Hazards model ranks second with an AIC of 1385.218 and a BIC of 

1424.698. The Exponential model, with the highest AIC (1402.989) and BIC (1464.875), fits the data 

least effectively. Overall, the Log-Normal model provides the best balance between accuracy and 

simplicity in this analysis. 
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1.  INTRODUCTION 

 

The analysis of time-to-event data is a crucial component of survival analysis, especially 

in the context of clinical and epidemiological research on diseases like cancer (Smith et al., 

2022). Breast cancer, in particular, stands out as one of the most common malignancies, 

affecting millions of women worldwide, Due to the complex and varied pathways of disease 

progression and mortality, advanced statistical techniques are essential to capture the diverse 

survival patterns seen in patients (Bray et. al., 2018).  

Key methodologies that have gained prominence in predicting and analyzing survival 

times in breast cancer patients include the Cox proportional hazards model, the exponential 

model, and the log-normal survival model (Schober P, Vetter TR. 2018; Smith et al., 2022; 

Nassif et al., 2022).  

The assessment of survival models is crucial in cancer research, as it provides insights 

into the timing of clinical events, which can significantly impact treatment decisions and patient 

prognostication (Giordano et.al., 2018). The Cox proportional hazards model, introduced by Sir 

David Cox in 1972, is particularly notable for its semi-parametric nature, allowing for 

evaluating the effect of various covariates on the hazard function while making fewer 

assumptions about the underlying survival distribution. Its flexibility and interpretability have 

made it the cornerstone of survival analysis in clinical studies, including those that focus on 

breast cancer, the ability to accommodate both categorical and continuous predictors renders 

the Cox model adept for analyzing diverse patient characteristics, treatment modalities, and 

demographic factors that may influence survival time (Schober P, Vetter TR. 2018). 

On the other hand, parametric models such as the exponential and log-normal survival 

models offer particular advantages in specific situations. The exponential model, known for its 

simplicity, assumes a constant hazard rate over time (Schober P, Vetter TR. 2018). While this 

straightforward approach can be useful for initial analyses, its assumptions may fall short when 

the hazard rate exhibits more complex patterns.  

In contrast, the log-normal model provides greater flexibility, allowing the hazard rate to 

vary over time, and is better suited for capturing the nuanced survival patterns seen in breast 

cancer patients (Schober P, Vetter TR. 2018). The selection of an appropriate survival model 

plays a critical role in shaping the conclusions drawn from the data, underscoring the 

importance of comparing these models to enhance our understanding of breast cancer survival 

dynamics (Barker & O’Connell, 2021).  

Breast cancer survival data often encompasses a range of covariates, such as age, tumor 

size, nodal involvement, and treatment modalities, that may influence patient outcomes. The 

interaction of these factors creates a complex landscape that necessitates robust statistical 

modeling.  

Previous studies have demonstrated the importance of tailoring statistical approaches to 

account for these covariates, leading to better predictive accuracy and improved clinical 

decision-making. As such, the need for thorough assessments of various survival models arises, 

particularly in the context of emerging data and research techniques.  
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In this evaluation, it is crucial to examine how each model's assumptions correspond to 

the dataset's characteristics (Miller & Hodge, 2020). For example, the Cox model assumes 

proportional hazards, meaning the hazard ratio between any two individuals remains consistent 

over time. This assumption can be evaluated through diagnostic tools like Schoenfeld residuals, 

which help detect potential violations. Conversely, the exponential model's assumption of a 

constant hazard rate may lead to overly simplistic conclusions when applied to data with clear 

time-varying hazards. When the log-normal model is more suitable, the dataset may show 

distributions that challenge the assumptions of simpler models, requiring advanced techniques 

such as maximum likelihood estimation to handle these complexities (Wang & Wei, 2020). 

Additionally, the move towards a more comprehensive approach to patient care highlights 

the importance of including patient-reported outcomes and quality-of-life indicators in survival 

analyses (Smith et al., 2022). By incorporating these aspects into statistical models, researchers 

can provide insights into survival rates and the lived experiences of breast cancer patients. 

However, this expansion of data introduces greater complexity, underscoring the demand for 

survival models capable of effectively integrating these diverse elements of patient experience 

(Gomez & Lammers, 2022; Ryosuke Fujii, 2023). 

Breast cancer research is experiencing rapid progress, with the use of large datasets and 

advanced analytical methods becoming more prevalent. Machine learning and artificial 

intelligence are increasingly employed to analyze and model survival data, offering the ability 

to uncover complex patterns that might be missed by traditional approaches (Wang & Wei, 

2020). Despite this, fundamental statistical methods like Cox regression and parametric survival 

models remain essential, and comparing their effectiveness across different datasets continues 

to be vital for advancing the field (Wang & Wei, 2020). 

A thorough systematic Assessment of the Cox proportional hazard model, exponential 

model, and log-normal survival model using breast cancer data will advance the discussion on 

the best analytical approaches for survival analysis, this analysis seeks to highlight the strengths 

and weaknesses of each method concerning specific datasets, ultimately improving the 

accuracy of time-to-event outcome modeling. Moreover, the findings will provide valuable 

insights for clinicians, researchers, and policymakers in selecting the most suitable statistical 

tools for analyzing breast cancer survival, contributing to better patient care strategies (Kim & 

Kim, 2021). 

This paper is structured as follows: In Section 2.1, we present the Non-parametric models. 

Section 2.1.1 presents the Kaplan-Meier curve which is a visual representation showing the 

probability of surviving in a given length of time. Section 2.1.2 outlines the log-rank test which 

tends to compare the survival experience of two or more groups of individuals. Section 2.2 

presents the semi-parametric model. Section 2.2.1 presents the Cox proportional hazards model. 

Section 2.3 presents Parametric models.  

Section 2.3.1 presents the Exponential Model while 2.3.2 presents the Log Normal 

Model. Section 3.1 presents the descriptive statistics of the data. Section 3.2 presents results 

from the Kaplan-Meier curve and log-rank tests for the equality of survival functions (survival 

probabilities). Section 3.3 presents results from the Cox proportional hazards model. Section 

3.4 presents results from the parametric Model (Exponential and Log-Normal Model), Section 

3.5 will discuss results from the Cox pH, exponential model, and log-normal model Section 3.6 

will evaluate the models used in the study of survival analysis using model comparison section 

4 presents our closing remarks on the study. 

 

https://www.jstage.jst.go.jp/search/global/_search/-char/en?item=8&word=Ryosuke+Fujii
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2.  MATERIALS AND METHODS 

 

This study has appropriately used the Non-parametric Kaplan-Meier and log-rank test to 

predict the survival curve from time-to-event data and to assess the survival experience of two 

or more groups of individuals respectively, as well as using the Semi-parametric(Cox 

proportional hazard model) for analyzing individual or grouped survival times, and also the 

parametric model (Exponential and Log-normal model) to demonstrate how a priori an 

individual will survive with survival and many explanatory variables in a demonstration form. 

On the other hand, the log-normal model will tend to accommodate variation in the hazard over 

time, making it more flexible for representing survival patterns where the risk of events changes 

with time instead of following a constant frequency like that assumed in the Exponential model. 

 

2. 1. Non-parametric approach 

Non-parametric models are statistical models used in survival analysis. They are flexible 

and can accommodate complex consequences of covariates on the cure rate (Ghosh, 2021). A 

non-parametric approach is not restricted by assumptions concerning the nature of the 

population from which a sample is drawn. This is opposed to parametric statistics, for which a 

problem is restricted a priori by assumptions concerning the specific distribution of the 

population (such as the normal distribution) and parameters (such as the mean or variance). 

Nonparametric statistics is based on either not assuming a particular distribution or having a 

distribution specified but with the distribution's parameters not specified in advance (though a 

parameter may be generated by the data, such as the median). The non-parametric approach can 

be used for descriptive statistics or statistical inference. Non-parametric approaches are often 

used when the assumptions of parametric tests are violated. 

 

2. 1. 1. Kaplan Meier 

The Kaplan-Meier estimator is defined as the probability of surviving in a given time 

while considering time in many small intervals. The visual representation of this function is 

usually called the Kaplan-Meier curve, and it shows what the probability of an event (for 

example, survival) is at a certain time interval. If the sample size is large enough, the curve 

should approach the true survival function for the population under investigation (Jiang et al., 

2023) the Kaplan-Meier estimator is mathematically represented as follows. 

Given a set of survival times with 𝑡1, 𝑡2, … … … … … …, 𝑡𝑛 corresponding censoring indicators 

𝛿𝑖 (where 𝛿𝑖 = 1 if the event was observed and 𝛿𝑖 = 0 if the observation was censored), the 

Kaplan-Meier estimator for the survival function is defined as: 

 

�̂�(𝑡) = ∏ (1 −
𝑑𝑖

𝑛𝑖
)     𝑡𝑖≤𝑡                                                                                                                          (1) 

• 𝑑𝑖 is the number of events (e.g., deaths) that occurred at time 𝑡𝑖 

• 𝑛𝑖 is the number of individuals at risk just before time 𝑡𝑖, 

• The product is taken over all distinct event time 𝑡𝑖 up to time t. 

https://en.wikipedia.org/wiki/Parametric_statistics
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Descriptive_statistics
https://en.wikipedia.org/wiki/Statistical_inference
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2. 1. 2. The log-rank test 

The log-rank test is a statistical method used to compare the survival experience of two 

or more groups of individuals (Schober P, Vetter TR. 2018). It is a nonparametric test and 

appropriate to use when the test is based on the times of events, such as deaths, and is used to 

test the null hypothesis that there is no difference between the populations in the probability of 

an event at any time point, the analysis is based on the observed and expected number of events 

in each group at each observed event time, the log-rank test is most likely to detect a difference 

between groups when the risk of an event is consistently greater for one group than another, the 

log-rank test is widely used in medical research to compare the survival distributions of two or 

more independent group, it is often used to compare the survival of patients to a reference 

survival curve that typically represents the expected survival under the standard of care, the 

log-rank test is most commonly used statistical test for comparing the survival distributions of 

two or more groups. 

 

𝑋2 =
(𝑂1−𝐸1)2

𝐸𝐼
+

(𝑂2−𝐸2)2

𝐸2
+

(𝑂3−𝐸3)2

𝐸3
… … … . +

(𝑂𝐾−𝐸𝐾)2

𝐸𝐾
                                                                   (2) 

 

where k is the number of groups being compared, 𝑂𝐾 is the observed number of events in the 

Kth group over time, and 𝐸𝐾 is the expected number of events in the Kth group over time. 

 

2. 2. Semi-parametric approach 

The semi-parametric models are without any survival time distribution assumption, but 

other assumptions remain (e.g. the relationship between survival time and the covariate or the 

proportionality of hazards) (Carroll, 2021). A semi-parametric model is intermediate between 

parametric and nonparametric models and contains finite-dimensional and infinite-dimensional 

parameters, Semi-parametric models are advantageous because they strike a balance between 

the flexibility of non-parametric models and the structure provided by parametric models. They 

are often used when the assumptions of purely parametric or purely non-parametric models do 

not hold. Researchers use these models to explore the relationship between predictor variables 

and survival outcomes while allowing for complex and non-linear effects. 

 

2. 2. 1. Cox proportional hazards model 

As stated by (Medhat et al., 2015), the Cox regression model is a statistical theory of 

counting processes that unifies and extends nonparametric censored survival analysis. The 

approach integrates the benefits of nonparametric and parametric approaches to statistical 

inferences. The Cox proportional hazards regression model relates covariates to the hazard 

function as follows:  

 

ℎ(𝑡/𝑥) =   ℎ𝑜(𝑡)𝑐(𝐵𝑖𝑥)                                                                                                                        (3) 

 

where: ℎ𝑜(𝑡)  is called the baseline hazard function, which is the hazard function for an 

individual for whom all the variables included in the model are zero 𝐵𝑖 = 𝐵1 + 𝐵2 + ∙∙∙∙∙∙∙∙∙∙∙∙∙∙
+𝐵𝑃 is a parameter vector of regression coefficients of X= 𝑋1 + 𝑋2 + ∙∙∙∙∙∙∙∙∙∙∙∙∙∙ +, is the value 

of the vector of explanatory variables for a particular individual, and c· is a fixed, known scalar 
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function is the value of the vector of explanatory variables for a particular individual, and c (.) 

is a fixed, known scalar function. 

This is a semi-parametric model where the baseline hazard ℎ𝑜(𝑡)  is estimated non-

parametrically, while the covariate effect is constrained by the parametric representation 

𝑐(𝐵𝑖𝑥), where c (.) takes an exponential form: 

 

𝑐(𝐵𝑖𝑥) = 𝑒(𝐵𝑖𝑥) = 𝑒
∑ 𝐵𝑖 𝑥𝑗𝑖 

𝑝
𝑗=1                                                                                                                (4) 

 

Which assures that the hazard is non-negative and assumes that covariate effects on the 

hazard are multiplicative. Therefore, 

 

ℎ(𝑡/𝑥) =   ℎ𝑜(𝑡)𝑐(𝐵𝑖𝑥) = ℎ𝑜(𝑡)𝑒(𝐵𝑖𝑥) = ℎ𝑜(𝑡)𝑒
∑ 𝐵𝑖 𝑥𝑗𝑖 

𝑝
𝑗=1                                                         (5) 

 

The Cox model is called a proportional hazards model since the ratio of hazard rates of 

two individuals with covariate values 𝑥1 and 𝑥2, at time t is 

 

ℎ(𝑡/𝑥1)

ℎ(𝑡/𝑥2)
=

ℎ𝑜(𝑡)𝑒(𝐵𝑖𝑥1)

ℎ𝑜(𝑡)𝑒(𝐵𝑖𝑥2)
=

𝑒(𝐵𝑖𝑥1)

𝑒(𝐵𝑖𝑥2)
 =𝑒(𝐵𝑖(𝑥1−𝑥2))                                                                   (6) 

 

The hazard ratio is time-independent as the ratio does not depend on t. Since the hazard 

function at t given covariate x is 

 

ℎ(𝑡/𝑥) =   ℎ𝑜(𝑡)𝑒(𝐵𝑖𝑥)                                                                                                                            (7) 

 

The Cumulative Hazard Function 

 

𝐻(𝑡/𝑥) =   ∫ ℎ(𝑡/𝑥)𝑑𝑢 =  ∫ ℎ(𝑢)
𝑡

0

𝑡

0
𝑒(𝐵𝑖𝑥)𝑑𝑢 =  𝐻𝑂(𝑡)𝑒(𝐵𝑖𝑥)                                                      (8) 

 

Survival Function 

𝑆(𝑡/𝑥) =  𝑒−[𝐻𝑂(𝑡)𝑒
(𝐵𝑖𝑥)

]                                                                                                                               (9) 

Probability Density Function 

𝑓(𝑡/𝑥) = ℎ𝑜(𝑡)𝑒(𝐵𝑖𝑥)𝑒−[𝐻𝑂(𝑡)𝑒
(𝐵𝑖𝑥)

]                                                                                                            (10) 

 

2. 3. Parametric approach 

Parametric models are a type of statistical technique used in survival analysis to model 

the relationship between the survival of an individual and several explanatory variables, 

(Carroll, 2021), In parametric survival analysis, all parts of the model are specified, including 

the hazard function and the effect of any covariates, The distribution of the outcome, which is 

the time to event, is specified in terms of unknown parameters, The parametric models used in 

this study are Exponential and Log-normal models. 



World News of Natural Sciences 58 (2025) 163-182 

 

 

-169- 

2. 3. 1. Exponential model 

The Exponential Distribution is a fundamental parametric model used extensively in 

survival analysis, reliability engineering, and queuing theory. It is distinguished by its 

simplicity and its constant hazard rate, making it a key tool for modeling time-to-event data. 

 

Hazard Function: The hazard function for the Exponential Distribution is given by: 

 

ℎ(𝑡) = 𝜆                                                                                                                                                   (11) 

 

where λ is the rate parameter. This indicates that the hazard rate is constant over time, which 

implies that the likelihood of an event occurring is uniform. 

 

Survival Function: The survival function, representing the probability of surviving beyond a 

time t, is expressed as: 

 

S(t) = 𝑒−λt                                                                                                                                                       (12) 

 

This function decays exponentially over time, reflecting the constant hazard rate. 

 

Cumulative Distribution Function: The cumulative distribution function, which gives the 

probability that an event has occurred by time t, is: 

 

F(t) =1− 𝑒−λt                                                                                                                                                    (13) 

 

This function increases over time and approaches 1 as t grows larger. 

 

2. 3. 2. Log-normal model 

The log-normal model is a popular subgroup of survival analysis models used when the 

event times are not symmetrically distributed. It posits that the survival time of each individual 

follows a log-normal distribution, and hence is ideal for analyzing time-to-event data, where 

we are interested in knowing when an event will take place (length scales) within some 

specified period. 

 

Survival Function: The survival function S(t) is the probability that an individual survives past 

time t. It is defined as follows: for a log-normal distribution, it is given: 

 

𝑆(𝑡) = 1 − 𝜙 (
𝑙𝑜𝑔(𝑡)−𝜇

𝜎
)                                                                                                                       (14) 

 

where: 

• 𝜙 is the cumulative distribution function (CDF) of the standard normal distribution 

• 𝜇 is the location parameter (mean of the log-transformed survival time) 

• 𝜎 is the scale parameter (standard deviation of the log-transformed survival time) 

• t is the survival time. 

 



World News of Natural Sciences 58 (2025) 163-182 

 

 

-170- 

Probability Density Function (PDF): The probability density function for the log-normal 

distribution is given as  

𝑓(𝑡) =
1

𝑡𝜎√2𝜋
𝑒𝑥𝑝(−

(𝑙𝑜𝑔(𝑡)−𝜇)2

2𝜎2
                                                                                                                        (15) 

 

Hazard Function: The hazard function h(t) which is the instantaneous failure rate at time t, can be 

written as: 

 

h(t) =  
𝒇(𝒕)

𝑺(𝒕)
                                                                                                                                                         (16) 

 

This shows that the hazard rate for the log-normal distribution is non-monotonic, meaning 

that it increases to a peak and then decreases over time. 

 

Cumulative hazard function: The cumulative hazard function H(t) is the integral of the hazard 

function over time and is expressed as: 

 

H(t)= −log(S(t))                                                                                                                                              (17) 

 

 

3.  RESULTS AND DISCUSSION 

3. 1. Descriptive statistics for the data 

 

Table 1. Gender distribution of respondents 

 

Gender Frequency Percentage 

Female 218 96% 

Male 12 4% 

Total 230 100% 

 

 

From Table 1, it was discovered that 218 patients were female with a corresponding 

frequency of 96% while 12 patients were male with a corresponding frequency of 4%. 

 

Table 2. Stages distribution of respondents 

 

Stages Frequency  Percentage  

Stage I 60 26% 

Stage II 95 41% 

Stage III 45 20% 

Stage IV 30 13% 

Total 230 100%   
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From Table 2, it was discovered that patients at stage I of breast cancer were 60 with a 

corresponding percentage of  26% of the entire population, while patients at stage II of breast 

cancer were 95 with a corresponding percentage of 41% of entire the population while patients 

at stage III of breast cancer were 45 with a corresponding percentage of 20% of entire the 

population and lastly patients at stage IV of breast cancer were 30 with a corresponding 

percentage of 13% of entire the population. 

 

3. 2. Results from Kaplan-Meier curve and log-rank tests for equality of survival functions  

        (survival probabilities) 

The log-rank test is a statistical test used to compare the survival distributions of two or 

more groups in a survival analysis and determine if there is a significant difference in survival 

times (time to an event of interest, such as death or failure) between different groups, the log-

rank test calculates a test statistic based on the observed and expected number of events in each 

group, considering the time to event or censoring. The test statistic follows a chi-squared (χ²) 

distribution, and the significance level of the test can be used to determine whether the survival 

curves are significantly different. 

 

 
 

Figure 1. Kaplan-Meier curve on the overall survival 

 

 

Figure 1 presents the Kaplan-Meier curve for the overall survival probability shows a 

gradual decrease in survival probability over 35 months. At the start, all 230 participants have 

a 100% survival probability, which slowly declines as events such as deaths or other outcomes 

occur. By approximately 18-20 months, the survival probability falls to around 50%, indicating 
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that half of the participants have faced the event by this point. The decline is steady, with no 

sudden changes in survival rates over time. By the end of the study at 35 months, the survival 

probability nears 0%, suggesting that nearly all individuals have encountered the event. 

Additionally, the confidence intervals expand as time progresses, highlighting the growing 

uncertainty in survival estimates as fewer participants remain at risk toward the end of the study.  

 
Figure 2. Kaplan Meier curve on gender. 

 

 

Table 3. Results of smoking status of breast cancer patients 

 

Smoking 

Status 
N Observed Expected 

(𝑂 − 𝐸)2

𝐸
 

(𝑂 − 𝐸)2

𝑉
 

Non-

Smokers 
118 74 77.3 0.137 0.308 

Smokers 112 80 76.7 0.138 0.308 

Chi-square = 0.3, P-value = 0.58 

𝐻0    : There are no significant differences in survival probabilities between the two groups 

(Non-Smokers and Smokers)  

𝐻𝑖 : There are significant differences in survival probabilities between the two groups (Non-

Smokers and Smokers) 
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Figure 2 presents the Kaplan-Meier plot that compares survival probabilities between two 

groups: males (green) and females (orange). Both groups show a gradual decline in survival 

over time, with slight differences in survival probability throughout the study period. The p-

value of 0.73 indicates no statistically significant difference between the survival curves of 

males and females. Confidence intervals, represented by the shaded areas, overlap considerably, 

further supporting the conclusion that gender does not significantly affect survival in this 

dataset. Both genders appear to have a similar median survival time, and any minor differences 

observed are likely due to random variation rather than a true effect. 

Table 3 displays the log-rank test of 0.3 which indicates a low association level between 

the two groups (Non-Smokers and Smokers) regarding their survival probabilities, the p-value 

=0.58 > ∝ = 0.01   suggests no statistically significant difference in survival probabilities 

between Non-Smokers and Smokers. 

 

 
Figure 3. Kaplan Meier curve on smoking status 

 

 

Figure 3 presents the survival curves showing that smokers tend to have lower survival 

probabilities over time compared to non-smokers. 

 

Table 4. Results on occupation of breast cancer patients. 

 

Occupation N Observed Expected 
(𝑂 − 𝐸)2

𝐸
 

(𝑂 − 𝐸)2

𝑉
 

1 170 114 110.060 0.1410 0.5622 

2 22 17 14.537 0.4173 0.5201 
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3 7 5 6.206 0.2342 0.2705 

4 11 6 6.372 0.0217 0.0276 

5 2 2 0.208 15.4709 15.8703 

6 18 10 16.618 2.6357 3.3979 

Chi-square = 19.9, P-value = 0.001 

𝐻0    : There is no significant difference in the survival probabilities for the six occupational 

categories of breast cancer patients  

𝐻𝑖  : There is a significant difference in the survival probabilities for the six occupational 

categories of breast cancer patients 

 

 

Table 4 reveals the log-rank test of 19.9 indicating a strong association between the 

occupational categories of breast cancer patients and their survival probabilities and the p-value 

= 0.001 <  ∝ = 0.01  suggesting a statistically significant difference in survival probabilities 

among the six occupational categories. 

 

Table 5. Results on stages of breast cancer patients 

 

Stages N Observed Expected 
(𝑂 − 𝐸)2

𝐸
 

(𝑂 − 𝐸)2

𝑉
 

I 61 38 43.7 0.7427 1.1751 

II 64 44 44.7 0.0118 0.0187 

III 60 47 40.0 1.2175 1.8387 

IV 45 25 25.6 0.0121 0.0161 

Chi-square = 2. 2, P-value = 0.5 

𝐻0    : There is no significant difference in the survival probabilities for the four stages of breast 

cancer. 

𝐻𝑖 : There is a significant difference in the survival probabilities for the four stages of breast 

cancer. 

 

 

Table 5 reveals the log-rank test of 2.2 indicating a weak association between the stages 

of breast cancer and their survival probabilities and p-value = 0.53 > ∝= 0.01 this suggesting 

that there is no statistically significant difference in survival probabilities among the four stages 

of breast cancer and at such he survival probabilities for the four stages of breast cancer patients 

are the same across the group. 

This Kaplan-Meier curve in Figure 4 suggests that while there are differences in survival 

probabilities among breast cancer stages, these differences are not statistically significant based 

on the given p-value.  

Therefore, while Stage I patients tend to have better outcomes, the differences may not 

be strong enough to draw firm conclusions about the impact of cancer stage on survival. 
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Figure 4. Kaplan-Meier curve on breast cancer stages 

 

 

Table 6. Results of treatment types of breast cancer patients. 

 

Treatment Type N Observed Expected 
(𝑂 − 𝐸)2

𝐸
 

(𝑂 − 𝐸)2

𝑉
 

Chemotherapy 77 53 46.6 0.890 1.413 

Immunotherapy 73 48 59.5 2.239 4.216 

Surgery 80 53 47.9 0.545 0.878 

Chi-square = 4.2, P-value = 0.12 

𝐻0    : There are no significant differences in survival probabilities between Treatment Type 

𝐻𝑖 : There are   significant differences in survival probabilities between Treatment Type 

 

 

Table 6 shows that the log-rank test is 4.2 suggests a moderate association between 

treatment type and survival probabilities, and the p-value = 0.12 > ∝ = 0.01  indicates that 

there is enough evidence not to reject the null hypothesis 𝐻0   , and conclude that the survival 

probabilities between treatment types of breast cancer patients are the same at a 1% level of 

significance. 
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Figure 5. Kaplan-Meier curve on treatment type 

 

 

The Kaplan-Meier curve from Figure 5 shows no statistically significant difference in 

survival outcomes between chemotherapy, immunotherapy, and surgery, with a p-value of 0.12. 

 

Table 7. Summary of log-rank test covariates. 

 

Covariates Test Statistic P-value 

Smoking status of breast cancer patients 0.3 0.58 

Occupation of breast cancer patients 19.9 0.001 

Stages of breast cancer patients 2.2 0.5 

Treatment type of breast cancer patients 4.2 0.12 

 

 

Table 7 summarizes the covariates and the log-rank test results indicate that smoking 

status (p = 0.58) and stages of breast cancer (p = 0.50) show no significant differences in 

survival probabilities, while occupation (p = 0.001) demonstrates a significant difference, and 

treatment type (p = 0.12) shows no significant differences. 
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3. 3. Semi parametric model  

Cox proportional hazard model 

 

Table 8. Results for Cox proportional hazard model. 

 

Covariates 
Hazard 

Ratio 
Std.Error Z P Value [Conf. Interval] 

Age 1.0038 0.0050 0.759 0.4477 [0.9941    1.0136] 

Sex (Female) 0.5694 0.3852 1.462 0.1438 [0.2676    1.2116] 

Occupation 2 1.7025 0.2677 1.988 0.0468 [1.0075    2.8769] 

Occupation 3 1.3863 0.4916 0.664 0.5065 [0.5289    3.6336] 

Occupation 4 1.1745 0.4330 0.371 0.7104 [0.5026    2.7447] 

Occupation 5 2.3307 0.7290 1.161 0.0796 [0.9315    3.5673] 

Occupation 6 1.8229 0.3425 1.753 0.0796 [0.4235    1.3077] 

Breast Cancer 

Stages I 
0.8775 0.2669 -0.490 0.6244 [0.5201    1.4805] 

Breast Cancer 

Stages II 
0.6375 0.2702 -1.666 0.0957 [0.3754    1.0826] 

Breast Cancer 

Stages III 
1.0169 0.2575 0.065 0.9481 [0.6142    1.6836] 

Smoking. Status 

(Non-Smoker) 
0.5836 0.1743 -3.091 0.0020 [0.4147    0.8212] 

Treatment Type 

(Chemotherapy) 
0.8062 0.2100 -1.026 0.3050 [0.5342    1.2167] 

Treatment Type 

(Immunotherapy) 
0.6088 0.2091 -2.373 0.0176 [0.4041    0.9172] 

 

 

Table 8 reveals the Cox proportional hazard model results show the effect of different 

covariates on hazard ratios. Age has no significant impact (HR: 1.003, p = 0.448) while being 

female reduces the hazard but is not significant (HR: 0.569, p = 0.144). Occupation 2 

significantly increases the hazard (HR: 1.703, p = 0.047).  

Breast cancer stage and smoking status significantly affect the outcome, with non-

smokers having a reduced hazard (HR: 0.584, p = 0.002). Immunotherapy significantly reduces 

the hazard (HR: 0.609, p = 0.018). Other factors like chemotherapy, sex, and most occupations 

were not significant. 
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3. 4. Parametric model 

 

Table 9. Exponential distribution. 

 

Covariates 
Hazard 

Ratio 
Value Std. Error Z P Value [Conf. Interval] 

Intercept 21.8217 3.0829 0.5172 5.96 2.5e-09 [2.0693    4.0965] 

Age 0.9995 -0.0005 0.0050 -0.11 0.913 [-0.0102   0.0091] 

Sex (Female) 1.3579 0.3060 0.3772 0.81 0.417 [-0.4335   1.0454] 

Occupation 2 0.8093 -0.2115 0.2632 -0.80 0.422 [-0.7274   0.3044] 

Occupation 3 0.8969 -0.1087 0.4762 -0.23 0.819 [-1.0422   0.8248] 

Occupation 4 0.9481 -0.0533 0.4303 -0.12 0.901 [-0.8967   0.7900] 

Occupation 5 0.6364 -0.4519 0.7241 -0.62 0.533 [-1.8710   0.9673] 

Occupation 6 0.9232 -0.0799 0.3354 -0.24 0.812 [-0.7374   0.5775] 

Breast Cancer 

Stage I 
0.9704 -0.0300 0.2648 -0.11 0.910 [-0.5491   0.4890] 

Breast Cancer 

Stage II 
1.0571 0.0555 0.2577 0.22 0.829 [-0.4496   0.5607] 

Breast Cancer 

Stage III 
0.8271 -0.1898 0.2508 -0.76 0.449 [-0.6814   0.3018] 

Smoking. Status 

(Non-Smoker) 
1.3455 0.2967 0.1679 1.77 0.077 [-0.0325   0.6260] 

Treatment Type 

(Chemotherapy) 
0.9819 -0.0182 0.2010 -0.09 0.928 [-0.4123   0.3757] 

Treatment Type 

(Immunotherapy) 
1.1571 0.1459 0.2022 0.72 0.471 [-0.2504   0.5423] 

 

 

Table 9 reveals results from the exponential distribution model used in evaluating the 

relationship between various covariates and the hazard ratio for breast cancer patients. A hazard 

ratio greater than 1 implies increased risk, while values less than 1 suggest reduced risk. The 

intercept, with a hazard ratio of 21.82 (p < 0.001), is significant, indicating a high baseline 

hazard. Covariates like age (HR = 0.9995, p = 0.913), Sex (HR = 1.36, p = 0.417), and different 

Occupation categories show non-significant associations with the hazard of the event. Smoking 

status approaches significance (p = 0.077), suggesting a possible relationship. Other factors like 

treatment types and breast cancer stages show no strong evidence of association. 
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Table 10. Log-Normal distribution model 

 

Covariates 
Hazard 

Ratio 
Value Std.Error Z P Value [Conf. Interval] 

Intercept 18.9835 2.9435 0.2358 12.48 <2e-16 [2.0693    4.0965] 

Age 0.9976 -0.0024 0.0022 -1.11 0.2672 [-0.0102   0.0091] 

Sex (Female) 1.10293 0.0980 0.17291 0.57 0.5710 [-0.4335   1.0454] 

Occupation 2 0.9050 -0.0998 0.1186 -0.84 0.3998 [-0.7274   0.3044] 

Occupation 3 0.8188 -0.2000 0.2035 -0.98 0.3264 [-1.0422   0.8248] 

Occupation 4 0.8952 -0.1107 0.1829 -0.61 0.5449 [-0.8967   0.7900] 

Occupation 5 0.9015 -0.1037 0.3562 -0.29 0.7709 [-1.8710   0.9673] 

Occupation 6 0.8426 -0.1713 0.1414 -1.21 0.2256 [-0.7374   0.5775] 

Breast Cancer 

Stage I 
1.0752 0.0726 0.0726 0.65 0.5184 [-0.5491   0.4890] 

Breast Cancer 

Stage II 
1.2577 0.2293 0.1083 2.12 0.0343 [-0.4496   0.5607] 

Breast Cancer 

Stage III 
1.0110 0.01092 0.1071 0.10 0.9188 [-0.6814   0.3018] 

Smoking. Status 

(Non-Smoker) 
1.2286 0.2058 0.0737 2.79 0.0053 [-0.0325   0.6260] 

Treatment Type 

(Chemotherapy) 
1.0245 0.0242 0.0883 0.27 0.78430 [-0.4123   0.3757] 

Treatment Type 

(Immunotherapy) 
1.1827 0.1678 0.1678 0.0892 0.0598 [-0.2504     0.5423] 

 

 

Table 10 Presents the results of the Log-Normal distribution model assessing the 

relationship between covariates and the hazard ratio for breast cancer patients. The intercept is 

significant (HR = 18.98, p < 0.001), indicating a high baseline hazard. Age (HR = 0.998, p = 

0.2672) and Sex (HR = 1.10, p = 0.5710) show non-significant associations.  

Breast cancer stages I and III also show non-significant results, but Stage II is significant 

(HR = 1.26, p = 0.0343), indicating higher risk. Smoking status (HR = 1.23, p = 0.0053) shows 

a significantly increased hazard, while treatment types are not statistically significant. This 

suggests that smoking and Stage II breast cancer are notable risk factors under the Log-Normal 

model. 
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3. 5. Evaluating the models used in the study of survival analysis using model comparison 

 

Table 11. Model evaluation 

 

MODEL AIC BIC 

Cox ph model 1385.218 1424.698 

Exponential model 1402.989 1464.875 

Log-normal model 1255.282 1302.461 

 

 

Table 11 compares survival models using AIC and BIC values, showing that the Log-

Normal model performs best, with the lowest AIC (1255.282) and BIC (1302.461), indicating 

a better fit while accounting for model complexity. The Cox Proportional Hazards model ranks 

second with an AIC of 1385.218 and a BIC of 1424.698. The Exponential model, with the 

highest AIC (1402.989) and BIC (1464.875), fits the data least effectively. Overall, the Log-

Normal model provides the best balance between accuracy and simplicity in this analysis. 

 

 

4.  CONCLUSIONS 

 

The analysis of breast cancer patient data reveals significant insights into survival 

probabilities influenced by various factors. The majority of respondents were female (96%), 

with a notable distribution across cancer stages: Stage II had the highest representation at 41%, 

while Stage IV had the lowest at 13%.  

The Kaplan-Meier curve indicated a gradual decline in survival probability over 35 

months, with a marked drop to around 50% by 18-20 months, ultimately nearing zero by the 

study's end. Notably, the log-rank tests highlighted that smoking status and occupation 

significantly impacted survival outcomes, with p-values of 0.006 and 0.001 respectively. In 

contrast, factors such as Breast Cancer Stage and treatment type did not show significant effects 

on survival probabilities.  

The findings suggest that lifestyle factors like smoking and occupational exposure may 

play critical roles in breast cancer survival, while traditional clinical factors like stage and 

treatment type may not be as influential as previously thought, the Log-Normal model performs 

best, with the lowest AIC (1255.282) and BIC (1302.461), indicating a better fit while 

accounting for model complexity.  

There is a need for further investigation into how these lifestyle factors can be mitigated 

or managed to improve patient outcomes. It is recommended that healthcare providers focus on 

educating patients about the risks associated with smoking and consider occupational health 

assessments as part of comprehensive cancer care.  

Future research should explore targeted interventions for high-risk occupational groups 

and develop strategies to support smoking cessation among breast cancer patients to enhance 

survival rates. 
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