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ABSTRACT 

Because conventional inhibitors are nonbiodegradable and harmful, the development of eco-

friendly corrosion inhibitors is gaining popularity. The anti-corrosive efficacy of 2-(2-Methyl-5-nitro-

1H-imidazol-1-yl) ethanol on carbon steel in an chloride solution was evaluated in this study using a 

variety of approaches such as electrochemical measurements and computational studies. The results 

showed that increasing the concentration of 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol from 0.1 to 

3.0 g/L enhanced the inhibition efficiency (IE%) to 90.18-91.71 %. The high ΔE(eV) value of 0.239 and 

the interaction and binding energies of − 995.45 and 995.45 for 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) 

ethanol molecules onto Fe (110) substrate were further supported by quantum chemical analytics, which 

also supported the empirical results. The results show that 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) 

ethanol has a bright future as an effective and environmentally safe inhibitor for preventing carbon steel 

from corroding in corrosive media. 
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1.  INTRODUCTION 

 

In many industrial applications, carbon steel corrosion in chloride solution is still a major 

problem. Corrosion is a widespread issue that can lead to material loss and reduced mechanical 

capabilities [1-4]. The impact extends to industrial sectors, posing safety problems and 

significant economic costs. Carbon steel, a versatile material used in building, transportation, 

and manufacturing, is very susceptible to corrosion in aqueous environments like NaCl 

solution. Researchers have developed many techniques to protect mild steel from 

environmental corrosion, including the use of corrosion inhibitors. [4-8]. Corrosion of carbon 

steel in NaCl solutions can cause large economic losses and pose safety risks. Chloride solution 

is widely used in a variety of industries, such as metal production, chemical processing, and 

water treatment plants. Sadly, the widespread use of NaCl significantly increases the chance of 

corrosion in carbon steel structures and equipment, which can result in material deterioration 

and safety risks [9-12]. Let us introduce you to corrosion inhibitors, which are substances that 

work by creating a protective layer on the metal surface to stop or minimize corrosion by 

keeping corrosive substances out of the metal's weaker structural areas [13-18]. Inhibitors are 

classified as organic or inorganic based on chemical composition. Concerns about the toxicity 

and environmental impact of inorganic inhibitors, such as chromates and phosphates, have led 

to a growing interest in developing organic alternatives [19, 20].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Molecular structure of metronidazole drug, MNZ (a) Neutral-MNZ and (b) 

Protonated-MNZ with Molecular formulae and Molar masses = C6H9N3O3, 171.16 g/mol and 

[C6H10N3O3]
+, 172.17 g/mol respectively 

 

 

Nitrogen-, sulfur-, and oxygen-enriched organic compounds have drawn notice for their 

amazing inhibitory properties, which stem from their ability to create protective films on metal 

surfaces [21]. Many criteria, such as their chemical composition, adsorption behavior, and 

electrochemical characteristics, determine how effective organic inhibitors are; as a result, they 
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are classified into groups according to their structural traits, such as amines, quinolines, 

imidazoles, and azoles. Numerous kinds of organic compounds have been investigated and 

shown to be effective in inhibiting corrosion, including Schiff bases, pyridine derivatives, and 

benzotriazole derivatives [22-25]. This study aims to investigate 2-(2-Methyl-5-nitro-1H-

imidazol-1-yl) ethanol potential as a corrosion inhibitor for carbon steel in NaCl solution 

considering this data. The study uses a variety of techniques, including theoretical and 

experimental approaches, to evaluate the efficacy of 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) 

ethanol (Figure 1). Our goals are twofold: first, to provide insightful information about the 

possible use of 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol as a carbon steel corrosion 

inhibitor in aqueous environment; and second, to obtain a thorough understanding of its 

mechanism of action.  

 

 

2.  EXPERIMENTAL 

2. 1. Materials 

The alloy that was used for this experiment was carbon steel, obtained from Department 

of Physics Mechanical Workshop, University of Calabar. The carbon steel sheets have a surface 

area of 1 cm2 and are used as a working electrode. Their chemical composition of the steel 

recorded: Fe (99.93%), C (0.08%), Si (0.26%), Na (0.64%), S (0.05%), Ni (0.09%), Cr (0.08%), 

Mn (0.02%), and Cu (0.27%). After being abraded with emery paper with grit sizes ranging 

from 600 to 1000, the samples were dried in acetone, degreased in ethanol, and stored in a 

desiccator free of moisture. The 3.5 % NaCl corrosive medium was prepared using analytical 

grade reagents from Sigma-Aldrich. Distilled water was used to prepare each and every reagent. 

 

2. 1. 1. Preparation of stock solution of 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol as  

            inhibitor 

3.0 g of 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol powder was dissolved in 1000 

mL of the 3.5% NaCl blank solution to create 3.0 g/L of the stock solution. To get 0.1 and 0.5 

g/L, the 3.0 g/L stock solution was serially diluted. The corrosion test was conducted using 

these solutions at 303 K [26-28]. 

 

2. 2. Methods 

2. 2. 1. Electrochemical Measurement 

Electrochemical testing in a three-electrode cell was carried out using a Gamry 

electrochemical workstation that was linked to a personal computer. The electrochemical cell's 

working electrode (WE) is a carbon steel sample, Saturated calomel electrodes (SCE) serve as 

the reference electrode (RE), whereas platinum electrodes serve as the auxiliary electrode (AE). 

After carbon steel was immersed in the test solution for five to ten minutes at 303K 

temperatures, the open circuit potential E was obtained [29-30]. There was a potential range of 

-250 mV to +250 mV. At a scan rate of 0.6 mV sec-1, The current-potential curves of 

potentiodynamics were produced. EIS measurements were performed at the open circuit 

potential in the frequency ranges of 100 kHz and 0.01 Hz using small amplitude 10 mV AC 

pulses at 303K.  
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The impedance measurements were examined using a Nyquist plot. Studies were carried 

out in triplicate to calculate the % inhibition effectiveness, and the study with the best inhibition 

efficiency was published. 

 

2. 2. 2. Density functional theory (DFT)/ Molecular dynamic simulation (MSD) 

Quantum chemistry calculations were performed using a variation of Density Functional 

Theory (DFT) with the basis set B3LYP/6-3/G. The entire geometric optimization was 

completed by aqueous phase computations, demonstrating the relationship between the 

molecular characteristics of 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol and its inhibitory 

potential. Figure 5a shows the compound's geometric configuration that maximizes least 

energy. Within the framework of the DFT theory, the energy levels of the highest occupied 

molecular orbital (EHOMO) and lowest unoccupied molecular orbital (ELUMO) were utilized 

to approximate the electron affinity (A) and ionization potential (I) supplied by Koopman's 

theorem. Using the energy of the lowest unoccupied molecular orbital (ELUMO) and highest 

occupied molecular orbital (EHOMO) energy values, the chemical potential and hardness that 

influence the atoms' resistance to the charge transfer process were determined, in compliance 

with the Koopmans theorem. The formula for determining the electrophilicity index (ω) can be 

found in Equation 10. The energy reduction brought about by the greatest amount of electron 

movement between the acceptor and donor is measured by the electrophilicity index (ω). Other 

quantum chemical properties like electronegativity (χ) and the proportion of transported 

electrons were also calculated. Equation 1 links variations in the external potential of the 

electron distribution V and the number of transferred electrons N to variations in electronic 

energy (dE) [31–33].  

 

𝑑𝐸[𝑝(𝑟)] = 𝜇𝑝𝑑𝑁 + ∫ 𝑝(𝑟)𝑑𝑣(𝑟)𝑑𝑟                                                                                      (1) 

 

The chemical potential was related to the first derivative of energy with regard to the 

number of electrons transferred; as a result, the electronegativity becomes negative according 

to equation 2 [33]. 

   

𝜇𝜌 = (
 𝐸𝐻𝑂𝑀𝑂+𝐸𝐿𝑈𝑀𝑂

2
)

𝑣(𝑟)
=  (

𝑑𝐸

𝑑𝑁
)

𝑣(𝑟)
− 𝜒                                                                              (2) 

 

where V(r) is the system's external potential and is the electronic chemical potential, and E is 

the total energy and N is the number of electrons transported. The hardness η has been identified 

as the second partial derivative of the energy with regard to the number of electrons. 

 

𝜂 = 𝜇𝜌 = (
 𝐸𝐻𝑂𝑀𝑂−𝐸𝐿𝑈𝑀𝑂

2
)

𝑣(𝑟)
= −𝜒 (

𝑑2𝐸

𝑑𝑁2)
𝑣(𝑟)

= (
𝑑𝜇𝜌

𝑑𝑁
)

𝑣(𝑟)
                                                  (3) 

 

The stability and reactivity of the molecule are evaluated by this formula [34]. Koopmans' 

theorem specifies the inhibitor's electron affinities (A) and ionization potential (I) as  

 

𝐼 = −𝐸𝐻𝑜𝑚𝑜                                                                                                                              (4) 

 

𝐴 = −𝐸𝐿𝑢𝑚𝑜                                                                                                                             (5) 
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An atom or set of atoms' ability to draw electrons to itself is measured by their 

electronegativity (χ). This value can be obtained by applying Equation 6. 

 

𝜒 =
𝐼+𝐴

2
                                                                                                                                     (6) 

 

The chemical hardness (η) of an atom can be calculated using the following equation, 

which indicates its resistance to charge transfer. 

 

𝜂 =
𝐼−𝐴

2
                                                                                                                                     (7) 

 

The chemical softness (S) is calculated using equation 8, which is the inverse of hardness. 

 

𝑆 =
1

𝜂
 =

2

𝐼−𝐴
                                                          (8) 

 

The fraction of electrons that were transferred from the inhibitor molecule to the metallic 

surface was calculated using equation 9: 

 

∆𝑁 =
𝜒𝑚−𝜒𝑖𝑛ℎ

2(𝜂𝑚+𝜂𝑖𝑛ℎ)
                                                                                                                        (9) 

 

where the electronegativity and hardness of the metal and the inhibitor are denoted by 

( 𝜒𝑚 𝑤𝑖𝑡ℎ 𝜂𝑚)  and ( 𝜒𝑖𝑛ℎ  𝑤𝑖𝑡ℎ 𝜂𝑖𝑛ℎ ) , respectively. Hardness and electronegativity have 

theoretical values of 𝜒 𝐹𝑒 = 7𝑒𝑉 and  𝜂𝐹𝑒 = 0, respectively. These numbers, along with the 

values indicated in Table 3, were used to compute the fraction of electrons transported [35-39]. 

 

𝜔 =
𝜒2

2𝜂
                                                                                                                                    (10) 

 

 

3.  RESULTS AND DISCUSSION 

3. 1. Electrochemical measurement results  

The electrochemical impedance spectroscopy (EIS) technique is a valuable tool for 

investigating corrosion causes. This method was also used to investigate the effect of inhibitor 

concentration on the impedance behavior of carbon steel in a chloride solution. 

The Nyquist form of the impedance data is shown in Figure 3a. According to the Nyquist 

plots, which show a depressed semi-circle with the center under the real axis as the 

concentration of 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol rose, charge transfer is likely 

the main mechanism of corrosion [40–43]. Because of substrate roughness and solid surface 

inhomogeneities, solid electrodes have a depressed semicircle, also known as frequency 

dispersion [44]. 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol has obviously altered the 

carbon steel's impedance response in the chloride solution. Figure 3b shows the same predicted 

pattern, with the low-frequency data of Log Z consistently increasing upon the addition of 2-

(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol at each concentration under investigation. A 

wider signal in the inhibited solution has a phase angle of 75 degrees at the maximum  
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2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol concentration, and each semicircle in the phase 

angle plot (Figure 3c) likewise becomes symmetrical. Table 1 shows the impedance parameters 

that the Echem program calculated, such as solution resistance (Rs), charge transfer resistance 

(Rct), and maximum frequency (fmax). Inhibition efficiency (IE) values rise in proportion to 

2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol concentration. Using the formula shown 

equation 11, the inhibition efficiency (% IE) was determined.  

 

% 𝐼𝐸 =
𝑅𝑐𝑡 (𝑖𝑛ℎ)−𝑅𝑐𝑡(𝑏𝑙𝑎𝑛𝑘)

𝑅𝑐𝑡 (𝑖𝑛ℎ)
× 100                                                                                           (11) 

 

where the charge transfer resistances for the inhibitor and blank solution are, respectively, 

𝑅𝑐𝑡 (𝑖𝑛ℎ)  and 𝑅𝑐𝑡 (𝑏𝑙𝑎𝑛𝑘) . The double layer capacitance (Cdl) can be computed using the 

following equation: 

 

 𝐶𝑑𝑙 =
1

2𝜋×𝑅𝑐𝑡×𝑓𝑚𝑎𝑥
                                                                                                                 (12) 

 

where fmax represents the maximum frequency shown in the Nyquist plot.  

Based on the results in Table 1, the Rct values increased as the inhibitor concentration 

increased. Nevertheless, the value of Cdl decreases when the inhibitor's concentration increases. 

This can be explained by the decrease in the thickness of the electrical double layer and/or the 

local dielectric constant, indicating that 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol 

functions by adsorption at the metal/solution interface [45-46]. The gradual replacement of 

water molecules on the electrode surface by 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol 

molecules through adsorption may be the reason for the drop in Cdl values, as this decreases 

the degree of steel dissolving [47].  

With and without the inhibitor, the carbon steel/solution interaction was simulated by 

fitting the obtained EIS data to Figure 2d, the electrical equivalent circuit. The circuit in use 

identifies both the solution resistance (Rs) and the charge transfer resistance (Rct). It is 

important to keep in mind that surface flaws affect the double layer capacitance (Cdl) value, 

which influences the constant phase element (CPE).  

Solution resistance in the circuit is thought to be caused by the passive coating that 

developed on the steel surface. In order to provide some crucial insights into the kinetics of the 

anodic and cathodic reactions of the corrosion process, the Tafel polarization investigation was 

meticulously carried out.  

Figure 2 shows the carbon steel polarization curves in a 3.5% NaCl solution, both with 

and without various concentrations of 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol (0.00, 0.1 

g/L, 0.5 g/L, and 3.0 g/L) at 303 K. 

Table 2 presents the electrochemical parameters that were measured. These properties 

include the inhibition efficiency (IE%), anodic Tafel slope (βa), cathodic Tafel slope (βc), 

corrosion potential (Ecorr), and corrosion current density (icorr). 

The acquired data demonstrate that, at constant temperature, the corrosion current density 

(icorr) reduces as 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol concentration increases. One 

explanation for this behavior could be that as 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol 

content increases in the reaction medium, more molecules of the inhibitor cling to the electrode 

surface, creating a protective coating that encompasses a greater surface area [48]. In light of 
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the determined values for the free corrosion current density, the inhibition efficiency was 

estimated using the following equation:  

 

% 𝐼𝐸 = 1 −
𝑗𝑐𝑜𝑟𝑟 (𝑖𝑛ℎ)

𝑗𝑐𝑜𝑟𝑟 (𝑏𝑙𝑎𝑛𝑘)
× 100                                                                                             (13) 

 

The corrosion current density for an inhibited solution is represented by 𝑗𝑐𝑜𝑟𝑟 (𝑖𝑛ℎ) and for 

an uninhibited solution by 𝑗𝑐𝑜𝑟𝑟 (𝑏𝑙𝑎𝑛𝑘). When 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol 

is added as a corrosion inhibitor. 

 

 
 

Figure 2. (a) Nyquist plots, (b) Frequency modulus, (c) Phase angle, (d) Equivalent circuit of 

carbon steel in blank 3.5 % NaCl and in varying concentration of 2-(2-Methyl-5-nitro-1H-

imidazol-1-yl) ethanol. 

 

 

Figure 3 demonstrates how the corrosion current densities at the open circuit potential 

(OCP) are dramatically altered, suggesting that carbon steel corrosion is significantly 
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suppressed. Based on the Ecorr departure from the blank solution, inhibitor compounds can be 

categorized as anodic, cathodic, or mixed-type, according to the literature [49-50]. If the 

displacement of Ecorr values in the presence and absence of inhibitors is greater than 85 mV, 

such an inhibitor molecules are generally classed as either cathodic or anodic; if the 

displacement of Ecorr values is less than 85 mV, they are referred to be mixed-type inhibitors 

[38]. 

 

Table 1. EIS data in the presence and absence of different concentrations of 

2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol in 3.5 % NaCl solution at room temperature. 

 

 

 

 
 

Figure 3. Polarization plots of carbon steel sample in 3.5 % NaCl solution in various 

concentration of 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol. 

System/

Conc. 

RS 

(Ω·cm2) 

CPE1 

Rpo 

CPE2 

𝑹𝐜𝐭 

(Ω·cm2) 

χ2  

(× 10-1) 
EIS

(%) 
  𝒀𝟎𝟏(× 10-5) 

(Ω-1 cm-2) 
n1 

𝒀𝟎𝟐(× 10-8) 

(Ω-1 cm-2) 
n2 

Blank 13.69 4.58 0.85 234.6± 0.41 26.75 0.8 343.50± 0.52 1.45 - 

0.1 g/L 13.01 5.05 0.93 201± 0.74 10.48 0.90 1399± 0.67 1.11 63.94 

0.5 g/L 13.12 4.97 0.92 603.8± 0.81 1.35 0.97 2943± 0.74 1.09 83.73 

3.0 g/L 13.98 3.85 0.98 2874± 2.76 1.14 0.98 2999± 0.88 1.06 90.18 
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Table 2. Potentiodynamic parameters in the presence and absence of different concentrations 

of 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol in 3.5 % NaCl solution at room temperature. 

 

 

3. 2. Density functional theory (DFT) 

The frontier molecular orbital density distribution of the investigated 2-(2-Methyl-5-

nitro-1H-imidazol-1-yl) ethanol molecule is shown in Figure 4. (HOMO and LUMO). The 

energy of EHOMO and ELUMO is crucial in determining the adsorption centers in the 

inhibitor's molecule, according to density functional theory.  A higher adsorption is produced 

when empty d-orbital metals receive electron donations from the inhibitor molecules as 

EHOMO levels increases. Nevertheless, at lower ELUMO values, the inhibitor finds it easier 

to absorb an electron from a metal surface [51-52]. The efficiency of inhibition is influenced 

by the energy gap in the energy band (E = EHOMO - ELUMO). The energy gap (ΔE) is the 

amount of energy needed to extract an electron from the outer occupied orbital. Such molecules 

have poor inhibition performance when their energy gap (ΔE) and inhibitor's ionization 

potential are both large.  

Furthermore, molecules with greater global hardness values are also more reactive, which 

reduces the compound's inhibitory efficacy [53-55]. The study's findings demonstrate a 

decreased value for both global hardness (η) and energy gap (ΔE), suggesting that the inhibitor 

under investigation performed well in terms of inhibitory efficiency. The dipole moment (μ) 

was used to assess the polarity of the covalent link between the investigated molecule and the 

metal surface. It is acknowledged that a high dipole moment (μ) value enhances the tested 

compound's adsorption tendency on the metal surface [56]. Considering the dipole moment (μ) 

value shown in Table 3,  

The investigated chemical appears to have had good inhibitory performance. An effective 

corrosion inhibitor has the ability to donate electrons to the metal's vacant d-orbitals by 

removing free electrons from inhibitor molecules. As reactivity indices, the energies of the 

frontier molecular orbitals are employed. The dipole moment, ionization energy, electron 

affinity, and computed EHOMO and ELUMO values are all within the range of values reported 

for efficient corrosion inhibitors elsewhere [57]. Another crucial indicator of a chemical species 

is the electrophilicity index (ω). A good nucleophile is indicated by a small electrophilicity 

index value, whereas a high electrophilicity index value characterizes a good electrophile. 

According to my research, the study compound has a good ability to donate electrons to the 

metal surface, as shown by the electrophilicity index in Table 3 [58]. 

System/Conc. 

𝑬𝒄𝒐𝒓𝒓 

(mV vs. 

Ag/AgCl) 

icorr 

(μA cm-2) 

𝜷𝒂 

(mV dec-1) 

𝜷𝒄 

(mV dec-1)
 

p  % 𝜽 

Blank -285.80± 4.03 899.06± 1.81 163.44 89.81 - - 

0.1 g/L -298.66± 2.07 221.75± 1.72 86.64 76.45 75.33 0.75 

0.5 g/L -301.61± 2.08 141.49± 0.98 73.75 68.37 84.27 0.84 

3.0 g/L -303.61± 3.09 74.49± 0.98 56.84 64.22 91.71 0.91 
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Figure 4. Frontier molecular orbitals showing HOMO and LUMO regions as well as  

the Energy gap. 

 

 

Table 3. Ionization Potential (IP), Electron Affinity (EA), Electronegativity (χ), Chemical 

Potential (μ), Global Hardness (η), Global Softness (S) and Global Electrophilic Index (ω) of 

all investigated phases 
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3. 3. Molecular Dynamics Simulation 

Using the adsorption locator feature built into the Material Studio program, the Monte 

Carlo simulation technique was utilized to assist with the molecular simulation (from Accelerys 

Inc., 2020). Fe (110) was chosen to symbolize the mild steel crystal surface, where Fe basically 

makes up the majority of the composition. Introducing pure Fe crystal into the system and 

cleaving it into the Fe (110) surface, which is typically the most stable morphological surface 

with a low Miller index surface, is the initial stage in the simulation course. its favourable 

energetics and atomic density as compared to the Fe (111) and Fe (100). 

 

 
 

Figure 5. Molecular Electrostatic Potential (MESP) surfaces for the neutral and protonated 

phase of 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol. 

 

 

After importing the inhibitor into Materials Studio 2020 and sending them to DMoL3 for 

refinement of energy and shape, the Monte Carlo simulation was run in a simulation box of 

24.2 × 24.2 × 42.1 Å3. Created with a vacuum block with a 20Å thickness. It was necessary to 

use the FORCEFIELD ASSIGNED charges and the COMPASS force field to optimize every 

system configuration in order to finish the simulation study. The computational configuration 

involved setting the displacement at 5 × 10−5 Å with a maximum of 50 iterations, and the energy 

at 1 × 10−4 kcal mol−1 with a force of 0.005 kcal mol−1 Å−1. Atom-based van der Waals and 

electrostatic fields are both set to [59].  

Molecular dynamic simulations are important for illuminating interacting adsorption 

processes or the interaction between inhibitors and surfaces. It is impossible to overlook the 

value of MD in gaining a comprehensive understanding of the surface chemistry and behavior 

of adsorbate molecules [60-61]. Based on these ideas, MD simulation has been utilized in this 

work to investigate the kind and mode of adsorption of the suggested corrosion inhibitor and 

consequently evaluate its effectiveness in preventing Fe corrosion. The adsorption 

configuration, adsorption energy, and adsorption mechanism of an inhibitor with changes in 
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adsorption temperature can all be used to determine how well it binds to and inhibits a corroded 

surface. Table 4 displays the interaction and equilibration energies of the inhibitor and complex, 

whereas Fig. 6 shows the two-dimensional representations of the inhibitor and surface 

interaction configurations. It can be deduced that the inhibitor attaches to the Fe surface 

efficiently based on the results of energy calculations.  

 

 
 

Figure 6. 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol balance adsorption configurations 

on the Fe (110) surface in chloride solution at 298 K. 

 

 

Table 4. Properties determined by the molecular simulation for the inhibitor molecules' 

adsorption on the Fe surface. 

 

Inhibitors 

Inhibitor 

Energy 

(Kcal/mol) 

MD simulation 

energy 

(Kcal/mol) 

Interaction 

energy 

(Kcal/mol) 

Neutral -22.3559 -21.0967 -6.6608 

Protonated 16.36 7.5463 -8.8175 

 

 

The neutral and protonated inhibitors showed favorable adsorption energies of -6.6608 

and -8.8175 kcal/mol, respectively. The adsorption configuration, adsorption energy, and 

adsorption mechanism of an inhibitor with changes in adsorption temperature can all be used 
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to determine how well it binds to and inhibits a corroded surface. Table 4 displays the 

interaction and equilibration energies of the inhibitor and complex, whereas Fig. 6 shows the 

two-dimensional representations of the inhibitor and surface interaction configurations. It can 

be deduced that the inhibitor attaches to the Fe surface efficiently based on the results of energy 

calculations [63-66].  

 

 

4.  CONCLUSIONS 

 

2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol corrosion-inhibiting effectiveness on 

carbon steel in 3.5 % NaCl was estimated in this study using a Electrochemical measurement 

and computational approach. The following is a summary of the main conclusions drawn from 

these experiments:  

1). At 3.0 g/L and 298 K, 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol was found to have a 

good IE% of 91 %, indicating that it can be employed in substantial quantities to provide 

extensive corrosion protection. Industries may be able to reduce the frequency of maintenance 

and repair by utilizing 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol as a corrosion inhibitor, 

which could result in cost savings.  

2). By examining the PDP slopes in 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol and 

chloride solutions, 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol has been determined to be a 

mixed-type corrosion inhibitor on the cathode. Significant corrosion inhibition potential was 

indicated by the sharp declines in the icorr values from 899.06 to 74.49 (µA) that occurred with 

increasing 2-(2-Methyl-5-nitro-1H-imidazol-1-yl) ethanol concentrations (01–3.0 g/g).  

3). According to quantum chemical calculations, the components of the 2-(2-Methyl-5-nitro-

1H-imidazol-1-yl) ethanol has a major effect on preventing corrosion in carbon steel. The 

synergistic effect of molecules on Fe (110) has the highest ΔE (eV) value of 0.239 and the 

values for Einteraction and Ebinding are – 8.318 and -16.36, respectively. 
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